首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2265篇
  免费   936篇
  国内免费   1408篇
测绘学   253篇
大气科学   3119篇
地球物理   306篇
地质学   312篇
海洋学   206篇
天文学   65篇
综合类   109篇
自然地理   239篇
  2024年   15篇
  2023年   119篇
  2022年   235篇
  2021年   309篇
  2020年   292篇
  2019年   318篇
  2018年   388篇
  2017年   367篇
  2016年   357篇
  2015年   375篇
  2014年   323篇
  2013年   302篇
  2012年   259篇
  2011年   209篇
  2010年   163篇
  2009年   159篇
  2008年   80篇
  2007年   112篇
  2006年   98篇
  2005年   40篇
  2004年   11篇
  2003年   16篇
  2002年   13篇
  2001年   4篇
  2000年   10篇
  1999年   30篇
  1998年   1篇
  1990年   1篇
  1957年   2篇
  1954年   1篇
排序方式: 共有4609条查询结果,搜索用时 421 毫秒
991.
Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent units. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be examined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.  相似文献   
992.
993.
The quasi-biweekly oscillation(QBWO) is the second most dominant intraseasonal mode over the western North Pacific(WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis(TCG) by the QBWO and its association with large-scale patterns are investigated. A strong modulation of WNP TCG events by the QBWO is found.More TCG events occur during the QBWO's convectively active phase. Based on the genesis potential index(GPI), we further evaluate the role of environmental factors in affecting WNP TCG. The positive GPI anomalies associated with the QBWO correspond well with TCG counts and locations. A large positive GPI anomaly is spatially correlated with WNP TCG events during a life cycle of the QBWO. The low-level relative vorticity and mid-level relative humidity appear to be two dominant contributors to the QBWO-composited GPI anomalies during the QBWO's active phase, followed by the nonlinear and potential intensity terms. These positive contributions to the GPI anomalies are partly offset by the negative contribution from the vertical wind shear. During the QBWO's inactive phase, the mid-level relative humidity appears to be the largest contributor, while weak contributions are also made by the nonlinear and low-level relative vorticity terms.Meanwhile, these positive contributions are partly cancelled out by the negative contribution from the potential intensity.The contributions of these environmental factors to the GPI anomalies associated with the QBWO are similar in all five flow patterns—the monsoon shear line, monsoon confluence region, monsoon gyre, easterly wave, and Rossby wave energy dispersion associated with a preexisting TC. Further analyses show that the QBWO strongly modulates the synoptic-scale wave trains(SSWs) over the WNP, with larger amplitude SSWs during the QBWO's active phase. This implies a possible enhanced(weakened) relationship between TCG and SSWs during the active(inactive) phase. This study improves our understanding of the modulation of WNP TCG by the QBWO and thus helps with efforts to improve the intraseasonal prediction of WNP TCG.  相似文献   
994.
995.
欧亚冬季温带反气旋活动的气候特征   总被引:1,自引:0,他引:1  
田笑  智协飞 《气象学报》2016,74(6):850-859
利用NCEP/NCAR再分析数据,通过判定和追踪温带反气旋的客观方法统计分析了1948-2013年欧亚地区冬季温带反气旋的生成、消亡、移动、生命史、强度等气候特征。结果表明,反气旋的主要源地位于蒙古高原、伊朗及其周边地区、地中海沿岸、中西伯利亚、波罗的海西北部、俄罗斯东北部等地,其中,蒙古高原和伊朗等地也是强反气旋最主要的源地。反气旋活动的大值分布区和反气旋生成的大值中心分布十分相似,主要活跃区对应低空平均经向温度梯度大值区和高空脊前。除源于蒙古高原和西伯利亚东北部的强、弱反气旋的移动距离差别不明显外,其他地区的反气旋移动距离与强度有密切关系。持续1-2 d的反气旋占总数的44.2%,而只有3.2%的反气旋生命史超过一周,且强反气旋比弱反气旋更易持续较长时间。   相似文献   
996.
利用2014年7月在黄山光明顶观测的气溶胶吸湿性参数(κ)和气溶胶离子化学组分、有机碳(OC,organic carbon)数据,对多尺度气溶胶吸湿性参数进行分析,并在此基础上建立了多尺度κ的参数化方案。研究结果表明,影响黄山夏季气溶胶来源的主要气团包括西南气团、北方气团以及东南气团。黄山夏季κ的变化范围为0.2-0.48,且随粒径增大成先增大后减小的分布特征;气溶胶粒径在0.15-1.1 μm的强吸湿段,κ>0.3,而在粒径小于0.15 μm和粒径大于1.1 μm弱吸湿段,κκ分布不同,气溶胶粒子在小于1.1 μm的粒径段,当受西南气团影响时,κ值最大,而受东南气团影响时,κ值最小;在气溶胶粒径大于1.1 μm时,κ在两个气团背景下呈现与气溶胶粒径小于1.1 μm时相反的分布特征。影响粒径小于1.1 μm气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、水溶性有机碳(WSOC,water soluble organic carbon),而影响大于1.1 μm粒径范围气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、NO3-、WSOC和Ca2+。由气溶胶多尺度离子化学组分和WSOC构建的气溶胶κ的参数化方案,在小于1.1 μm和大于1.1 μm的粒径范围内的表达式分别为κreg=0.12+0.45fNH4++0.63fSO42-+0.18fWSOC和κreg=0.01+0.78fNH4++0.76fNO3-+0.8fSO42--0.28fCa2++0.14fWSOC(f为对应组分的质量份数)。两个参数化方案均能较好地预报κ,预报值κreg与κ的计算值间存在较好的相关关系,相关系数通过了置信度99%的显著性检验,且预报误差在30%范围内。   相似文献   
997.
利用20世纪大气再分析资料和欧洲中心海温资料研究了春季西北太平洋风暴轴的年(代)际变化特征以及在不同年代际背景下风暴轴与太平洋海温关系的转变。结果表明,春季西北太平洋风暴轴主要存在两种空间变化模态,即反映其强度变化的第1模态和反映其南北位置变化的第2模态。年代际及以上时间尺度上,风暴轴强度、位置与太平洋海温的关系主要表现为大气对海洋的强迫作用。在不同年代际背景下,风暴轴与太平洋海温的关系则存在明显的年代际转变:1977年以后,风暴轴强度与太平洋海温的关系主要表现为大气对海洋的强迫作用,而在1977年之前则主要表现为海洋对大气的强迫作用,特别是同期冬季日本以东黑潮和黑潮延伸区海温异常的强迫作用;风暴轴南北位置与太平洋海温异常的关系,在1977年以后表现为大气对海洋的强迫作用,主要表现为对北太平洋中部海温的影响,但在1977年以前表现为海洋和大气的共同作用,风暴轴南北位置的变化还与同期的赤道中东太平洋海温异常有关,表明ENSO可能对风暴轴的位置变化存在影响。  相似文献   
998.
The effect of urban land-use change in eastern China on the East Asian subtropical monsoon (EASTM) is investigated by using the Community Atmosphere Model version 5.1. Comparison of the results between the urban expansion and reference experiments shows that with the urban expansion, the land surface energy balance alters: surface net radiation and sensible heat fluxes enhance while the latent heat fluxes reduce. As a result, a significant increase in surface air temperature over eastern China is detected. The urban land-use change contributes to a change in the zonal land-sea temperature difference (LSTD), leading to a delay in the time when LSTD changes from positive to negative, and vice versa. Additionally, the onset and retreat dates of the EASTM are also delayed. Meanwhile, the rise in surface air temperature leads to formation of abnormal northerly air flows, which may be the reason for the slower northward movement of the EASTM and a more southward location of its northern boundary.  相似文献   
999.
Super Typhoon Haiyan (1330), which occurred in 2013, is the most powerful typhoon during landfall in the meteorological record. In this study, the temporal and spatial distributions of lightning activity of Haiyan were analyzed by using the lightning data from the World Wide Lightning Location Network, typhoon intensity and position data from the China Meteorological Administration, and horizontal wind data from the ECMWF. Three distinct regions were identified in the spatial distribution of daily average lightning density, with the maxima in the inner core and the minima in the inner rainband. The lightning density in the intensifying stage of Haiyan was greater than that in its weakening stage. During the time when the typhoon intensity measured with maximum sustained wind speed was between 32.7 and 41.4 ms?1, the storm had the largest lightning density in the inner core, compared with other intensity stages. In contrast to earlier typhoon studies, the eyewall lightning burst out three times. The first two eyewall lightning outbreaks occurred during the period of rapid intensification and before the maximum intensity of the storm, suggesting that the eyewall lightning activity could be used to identify the change in tropical cyclone intensity. The flashes frequently occurred in the inner core, and in the outer rainbands with the black body temperature below 220 K. Combined with the ECMWF wind data, the influences of vertical wind shear (VWS) on the azimuthal distribution of flashes were also analyzed, showing that strong VWS produced downshear left asymmetry of lightning activity in the inner core and downshear right asymmetry in the rainbands.  相似文献   
1000.
Based on the daily rainfall data from China Meteorological Administration, the tropical cyclone (TC) best track data from Japan Meteorological Agency, and the NCEP-NCAR reanalysis data from NOAA, regional mean daily precipitation extreme (RDPE) events over southeastern China (specifically, the Fujian-Jiangxi region (FJR)) and the associated circulation anomalies are investigated. For the summers of 1979–2011, a total of 105 RDPE events are identified, among which 35 are TC-influenced (TCIn-RDPE) and 70 are TC-free events (TCFr-RDPE). Distinct differences between these two types of RDPEs are found in both their statistical features and the related circulation patterns. TCFr-RDPEs usually occur in June, while TCIn-RDPEs mainly take place during July–August. When TCFr-RDPEs happen, a center of the anomalous cyclonic circulation is observed over the FJR, with an anomalous anticyclonic circulation to the south of this region. The warm/moist air flows from the South China Sea (SCS) and western Pacific meet with colder air from the north, forming a narrow convergent belt of water vapor over the FJR. Simultaneously, positive diabatic forcing anomalies are observed over the FJR, whereas negative anomalies appear over both its south and north sides, facilitating the formation and maintenance of the cyclonic circulation anomaly, as well as the upward motion of the atmosphere, over the FJR. When TCIn-RDPEs occur, southeastern China is dominated by a TC-related stronger anomalous cyclonic circulation. An anomalous anticyclonic circulation in the mid and high latitudes north of the FJR exists in the mid and upper troposphere, opposite to the situation during TCFr-RDPE events. Abundant warm/wet air is carried into the FJR from both the Indian Ocean and the SCS, leading to a large amount of latent heat release over the FJR and inducing strong ascending motion there. Furthermore, large differences are also found in the manifestation of Rossby wave energy propagation between these two types of RDPE events. The results of this study are helpful to deepen our understanding of the mechanisms behind these two types of RDPE events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号